<table>
<thead>
<tr>
<th>Course code</th>
<th>Course Name</th>
<th>L-T-P Credits</th>
<th>Year of Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS403</td>
<td>PROGRAMMING PARADIGMS</td>
<td>3-0-0-3</td>
<td>2016</td>
</tr>
</tbody>
</table>

Course Objectives:
- To introduce the basic constructs that underlie all programming languages
- To introduce the basics of programming language design and implementation
- To introduce the organizational framework for learning new programming languages.

Syllabus:
Names, Scopes, and Bindings - Binding Time, Scope Rules, Storage Management, Overloading, Polymorphism; Control Flow - Expression Evaluation, Structured and Unstructured Flow, Non-determinacy; Data Types - Type Systems, Type Checking, Equality Testing and Assignment; Subroutines and Control Abstraction - Static and Dynamic Links, Calling Sequences, Parameter Passing, Exception Handling, Co-routines; Functional and Logic Languages; Data Abstraction and Object Orientation - Encapsulation, Inheritance, Dynamic Method Binding; Innovative features of Scripting Languages; Concurrency - Threads, Synchronization, Language-Level Mechanisms; Run-time program Management.

Expected Outcome:
The Students will be able to:
1. compare scope and binding of names in different programming languages
2. analyze control flow structures in different programming languages
3. appraise data types in different programming languages
4. analyze different control abstraction mechanisms
5. appraise constructs in functional, logic and scripting languages
6. analyze object oriented constructs in different programming languages
7. compare different concurrency constructs
8. interpret the concepts of run-time program management

Text book:

References:
<table>
<thead>
<tr>
<th>Module</th>
<th>Contents</th>
<th>Hours</th>
<th>End Sem. Exam Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Names, Scopes and Bindings:- Names and Scopes, Binding Time, Scope Rules, Storage Management, Binding of Referencing Environments; Control Flow: - Expression Evaluation, Structured and Unstructured Flow, Sequencing, Selection, Iteration, Recursion, Non-determinacy.</td>
<td>7</td>
<td>15%</td>
</tr>
<tr>
<td>II</td>
<td>Data Types:- Type Systems, Type Checking, Records and Variants, Arrays, Strings, Sets, Pointers and Recursive Types, Lists, Files and Input/Output, Equality Testing and Assignment.</td>
<td>7</td>
<td>15%</td>
</tr>
<tr>
<td></td>
<td>FIRST INTERNAL EXAM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>Subroutines and Control Abstraction: - Static and Dynamic Links, Calling Sequences, Parameter Passing, Generic Subroutines and Modules, Exception Handling, Co-routines.</td>
<td>7</td>
<td>15%</td>
</tr>
<tr>
<td>IV</td>
<td>Functional and Logic Languages:- Lambda Calculus, Overview of Scheme, Strictness and Lazy Evaluation, Streams and Monads, Higher-Order Functions, Logic Programming in Prolog, Limitations of Logic Programming.</td>
<td>7</td>
<td>15%</td>
</tr>
<tr>
<td>V</td>
<td>Data Abstraction and Object Orientation:- Encapsulation, Inheritance, Constructors and Destructors, Aliasing, Overloading, Polymorphism, Dynamic Method Binding, Multiple Inheritance; Innovative features of Scripting Languages:- Scoping rules, String and Pattern Manipulation, Data Types, Object Orientation.</td>
<td>7</td>
<td>20%</td>
</tr>
<tr>
<td>VI</td>
<td>Concurrency:- Threads, Synchronization, Run-time program Management:- Virtual Machines, Late Binding of Machine Code, Reflection, Symbolic Debugging, Performance Analysis.</td>
<td>7</td>
<td>20%</td>
</tr>
</tbody>
</table>

END SEMESTER EXAM
Question Paper Pattern (End semester exam)

1. There will be *FOUR* parts in the question paper – A, B, C, D

2. Part A
 a. **Total marks : 40**
 b. **TEN** questions, each have *4 marks*, covering all the SIX modules (*THREE* questions from modules I & II; *THREE* questions from modules III & IV; *FOUR* questions from modules V & VI).

 All the TEN questions have to be answered.

3. Part B
 a. **Total marks : 18**
 b. **THREE** questions, each having **9 marks**. One question is from module I; one question is from module II; one question *uniformly* covers modules I & II.
 c. *Any TWO* questions have to be answered.
 d. Each question can have **maximum THREE** subparts.

4. Part C
 a. **Total marks : 18**
 b. **THREE** questions, each having **9 marks**. One question is from module III; one question is from module IV; one question *uniformly* covers modules III & IV.
 c. *Any TWO* questions have to be answered.
 d. Each question can have **maximum THREE** subparts.

5. Part D
 a. **Total marks : 24**
 b. **THREE** questions, each having **12 marks**. One question is from module V; one question is from module VI; one question *uniformly* covers modules V & VI.
 c. *Any TWO* questions have to be answered.
 d. Each question can have **maximum THREE** subparts.

6. There will be *AT LEAST 50%* analytical/numerical questions in all possible combinations of question choices.